QUESTION:

Consider the Arrhenius equation given below and mark the correct option : k = Ae^ $\pi_{\rm e} R^{\rm T}_{\rm e}$

A Rate constant increases exponentially with increasing activation energy and decreasing temperature

Rate constant decreases exponentially with increasing activation energy and decreasing temperature

© Rate constant increases exponentially with decreasing activation energy and decreasing temperature

D Rate constant increases exponentially with decreasing activation energy and increasing temperature

ANSWER:

Correct option is D)

$$k = Ae^{-E_u/RT}$$
.....(i)

$$\Rightarrow$$
 ln k = ln (Ae^{-E_o/RT})

$$\Rightarrow \ln k = \ln \left(A \right) + \ln \left(e^{-E_u/RT} \right)$$

$$\Rightarrow ln\,k = ln\,(A) - \frac{E_a}{RT} ln\,(e)$$

$$\Rightarrow \ln k = \ln (A) - \frac{E_a}{RT}$$

So from this equation,

$$k \propto \frac{1}{E_a} \text{and} \, k \propto T$$

k increases if E_{α} decreases and increases if T increases.

Moreover, the relation in exponential can be seen in (i)

Option D is correct.